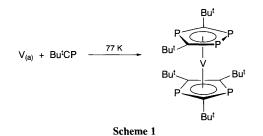
Synthesis, Spectroscopic Properties and Molecular Structure of the Paramagnetic Complex [$(\eta^{5}-3,5-di-tert-butyl-1,2,4-triphosphacyclopentadienyl)(\eta^{5}-2,4,5-tri-tert-butyl-1,3-diphosphacyclopentadienyl)]vanadium(II)$

F. Geoffrey N. Cloke,* Kevin R. Flower, Peter B. Hitchcock and John F. Nixon*

School of Chemistry and Molecular Sciences, University of Sussex, Brighton, UK BN1 9QJ


Cocondensation of vanadium vapour with the phosphaalkyne Bu^tCP affords the paramagnetic complex $[V(\eta^5-P_3C_2Bu^t_2)(\eta^5-P_2C_3Bu^t_3)]$, whose molecular structure is determined by a single crystal X-ray diffraction study.

Phosphaalkynes have been shown to undergo oligomerisation reactions at transition metal centres, affording a variety of phosphorus-containing ring systems such as 3,5-di-tert-butyl-1,2,4-triphosphacyclopentadienyl, 2,4,5-tri-tert-butyl-1,3-diphosphacyclopentadienyl, 1,3-diphosphacyclobutadiene and 1,3,5,7-tetraphosphabarrelene.¹⁻⁵ Recently we reported the first direct cocondensation of a metal vapour with phosphaalkynes afford the homoleptic to tris-(n⁴-1,3-diphosphacyclobutadiene)molybdenum.⁶ Subsequent extension of this synthetic approach led to the preparation of the novel phosphirenvl cation $(PC_2Bu_{2})^+$ ligated to nickel.⁷ Herein, we report that cocondensation of vanadium atoms with ButCP yields the novel paramagnetic pentaphosphavanadocene $[V(\eta^5-P_3C_2But_2)(\eta^5 P_2C_3Bu_3)].$

Cocondensation of electron-beam generated vanadium atoms with an excess of BuⁱCP at 77 K afforded a product of empirical formula [V(BuⁱCP)₅] in *ca*. 20–30% yield (*ca*. 1–1.5 g based on vanadium), which mass spectral, analytical,[†] magnetic and EPR[‡] data show to be the paramagnetic pentaphosphametallocene [V(η^5 -P₃C₂Bu^t₂)(η^5 -P₂C₃Bu^t₃)] **1**, see Scheme 1. Compound **1** was obtained as orange–brown airsensitive crystals either by sublimation at 160 °C (10⁻⁵ mbar) or recrystallisation from pentane at -30 °C.

The single-crystal X-ray diffraction study§ (Fig. 1) confirms the formulation and shows that the $(P_3C_2Bu^t_2)$ and $(P_2C_3Bu^t_3)$ rings are parallel and eclipsed with the tert-butyl groups arranged so as to minimise inter-ring interactions. When compared to the previously reported structures for the analogous iron⁸ and chromium⁹ compounds, there is a noticeable lengthening of the metal-ring bond distances in 1: e.g. V-C 2.42, Cr-C 2.30, Fe-C 2.20, V-P 2.56, Cr-P 2.45, Fe-P 2.33 and V–R_c 1.97, Cr–R_c 1.81 and Fe–R_c 1.69 Å (where R_c is the ring centroid). These elongations are larger than can be accounted for simply by the change in metal covalent radii (V 1.32, Cr 1.25 and Fe 1.24 Å).¹⁰ It is also interesting to note that this phenomenon can also be seen in the analogous metallocenes $[M(\eta - C_5H_5)_2]$ (M = V, Cr or Fe), where V-R_c 1.92,¹¹ $Cr-R_c$ 1.79¹² and Fe-R_c 1.66 Å (where $R_c = C_5H_5$ ring centroid),¹³ and has been rationalised in terms of the stepwise reduction in the number of bonding electrons for the open shell molecules.14

The solution magnetic moment[‡] of $3.54 \,\mu_B$ for 1 measured by the variable-temperature Evans' method¹⁵ and the bulk susceptibility measurement of $3.58 \,\mu_B$ are both close to the expected spin-only value for an S = 3/2 system. The EPR spectrum of 1 (Fig. 2) in toluene at room temperature is broad; however, the frozen solution spectrum at 77 K is reasonably well resolved in the perpendicular region which displays

vanadium hyperfine coupling (⁵¹V, I = 7/2, 99.75%). The spectrum is consistent with the non-axial symmetry of 1, but all attempts at accurate simulation, and hence extraction of accurate, fully anisotriopic A and g values, have been un-

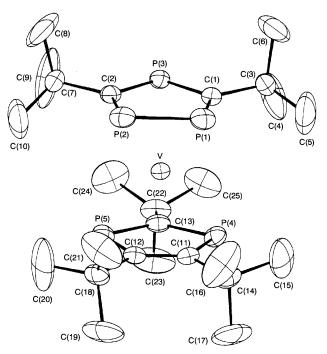


Fig. 1 Molecular structure of $[V(\eta^{5}-P_{3}C_{2}Bu_{12})(\eta^{5}-P_{2}C_{3}Bu_{13})]$ 1 (thermal ellipsoids at 50%). Selected bond lengths (Å) and angles (°): V–C(1) 2.421(4), V–C(2) 2.423(4), C–P(1) 2.567(2), V–P(2) 2.567(2), V–P(3) 2.560(2), V–C(11) 2.383(4), V–C(12) 2.391(4), V–C(13) 2.402(4), V–P(4) 2.5216(14), V–P(5) 2.5226(14), V–R_{c}(1) 1.972, V–R_{c}(2) 1.977; R_{c}(1)–V–R_{c}(2) 179.5 [where R_{c}(1) and R_{c}(2) are the ring centroids of the upper and lower rings, respectively].

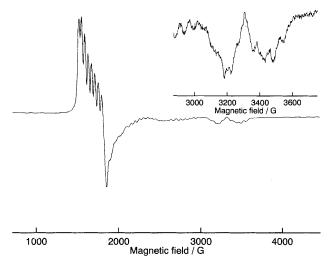


Fig. 2 Frozen solution EPR spectrum of 1. *Inset*: expansion of low intensity region.

successful; estimated values for the main perpendicular feature are g = 4.032 and A = 40 G. The weak features in the parallel region of the spectrum may involve both vanadium and phosphorus coupling or possibly a formally forbidden M_s = 2 transition, but the present data do not allow us to comment further on this. However, the essential features of the EPR spectrum of 1 are very similar to that of vanadocene,¹⁶ which, together with the magnetic data, imply a ${}^{4}A_{1g}(e_{2g}{}^{2}a_{1g}{}^{1})$ ground state for 1 also.

The comparatively high yield of 1 is also noteworthy; the only other paramagnetic phosphametallocene is [Cr- $(\eta^5-P_3C_2But_2)_2$], obtained by a conventional route in extremely low ($\ll 1\%$ yield).⁸ Interestingly, similarly low yields of [Cr- $(\eta^5-P_3C_2But_2)_2$] (identified by its mass spectrum) were also obtained from the direct reaction of chromium atoms with ButCP. The availability of reasonable quantities of 1 will thus allow exploration of the chemistry of an electron-deficient phosphametallocene. Studies in this area are in progress.

We thank the EPSRC for financial support and Mr C. Dadswell for recording the EPR spectrum.

Received, 3rd May 1995; Com. 5/028321

Footnotes

 \dagger C₂₅H₄₅P₅V: MS (EI, 70 eV), m/z 551 (M⁺, 100%), with the expected isotope pattern. Satisfactory elemental analysis (CH) was obtained.

- $\ddagger \mu_{\text{eff}}$ (solution, variable-temperature Evans' method 255–295 K) = 3.54 μ_{B} ; μ_{eff} (solid, Johnson Matthey magnetic susceptibility balance, 295 K) = 3.58 μ_{B} . EPR (toluene, 77 K).
- § *Crystal data*: C₂₅H₄₅P₅V, M = 551.4, monoclinic, space group $P_{2_1/n}$ (non-standard no. 14), a = 10.429(5), b = 16.672(5), c = 17.137(5) Å, $\beta = 91.84(3)^\circ$, U = 2978 Å³, Z = 4, $D_c = 1.23$ g cm⁻³, F(000) = 1172. Monochromated Mo-Kα radiation, $\lambda = 0.71073$, $\mu = 6.7$ cm⁻¹, T = 293 K. Data were collected on an Enraf-Nonius CAD 4 diffractometer in the θ -2 θ mode using a crystal of *ca*. 0.4 × 0.4 × 0.2 mm. A total of 5244 unique reflections were measured for $2 < \theta < 25^\circ$ and + h, + t, and used in the refinement based on F^2 using SHELXL-93.¹⁷ The structure was solved by direct methods using SHELXS-86¹⁸ and non-hydrogen atoms were refined anisotropically by full-matrix least-squares methods. Hydrogen atoms were included in the riding mode with $U_{iso} = 1.5$ U_{eq} for the parent carbon. The

final residuals were R1 = 0.051 [for 3841 reflections with $I > 2\sigma(I)$] and wR2 = 0.152 (for all data). The drawing was prepared using CAMERON.¹⁹ Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

- 1 P. B. Hitchcock, M. J. Maah and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1986, 737.
- 2 P. Binger, R. Milczarek, R. Mynott, M. Regitz and W. Rosch, Angew. Chem., Int. Ed. Engl., 1986, 25, 644; P. Binger, R. Milczarek, R. Mynott, C. Kruger, Y. H. Tsay, E. Rabbe and M. Regitz, Chem. Ber., 1988, 121, 637.
- 3 M. Driess, D. Hu, H. Pritzkow, H. Schaufele, U. Zenneck, M. Regitz and W. Rosch, J. Organomet. Chem., 1987, **334**, C35.
- 4 J. F. Nixon, Chem. Rev., 1988, 88, 1327; J. F. Nixon, Coord. Chem. Rev., in the press.
- 5 P. Binger, G. Glaser, B. Gabor and R. Mynott, *Angew. Chem., Int. Ed. Engl.*, 1995, **34**, 81.
- 6 F. G. N. Cloke, K. R. Flower, P. B. Hitchcock and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1994, 489.
- 7 A. G. Avent, F. G. N. Cloke, K. R. Flower, P. B. Hitchcock, J. F. Nixon and D. M. Vickers, Angew. Chem., Int. Ed. Engl., 1994, 33, 2330.
- 8 R. Bartsch, P. B. Hitchcock and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1987, 1146.
- 9 R. Bartsch, P. B. Hitchcock and J. F. Nixon, J. Organomet. Chem., 1988, 356. C1.
- 10 J. Emsley, *The Elements*, Clarendon, Oxford, 1989, 52, 96, 210.
- 11 R. D. Rodgers, J. L. Atwood, D. Foust and M. D. Rausch, J. Cryst. Mol. Struc., 1981, 11, 183.
- 12 K. R. Flower and P. B. Hitchcock, J. Organomet. Chem., 1995, in the press.
- 13 P. Seiler and J. Dunitz, Acta Crystallogr., Sect. B., 1979, 35, 1069.
- 14 A. Haaland, Acc. Chem. Res., 1978, 12, 415.
- 15 D. F. Evans, J. Chem. Soc., 1959, 2003.
- 16 J. L. Robbins, N. Edlestein, B. Spencer and J. C. Smart, J. Am. Chem. Soc., 1982, 104, 1882, and references cited therein.
- 17 G. M. Sheldrick, SHELXL-93, Program for crystal structure refinement, University of Göttingen, Germany, 1993.
- 18 G. M. Sheldrick, SHELXS-86, Program for the solution of crystal structures, University of Göttingen, Germany, 1985.
- 19 D. J. Watkin and L. J. Pearce, CAMERON, an interactive graphics editor, University of Oxford, UK, 1993.